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Abstract. In this paper, we investigate cascade defense and control in scale free networks via navigation
strategy. It is found that with an appropriate parameter a, which is tunable in controlling the effect of degree
in the navigation strategy, one can reduce the risk of cascade break down. By checking the distribution
of efficient betweenness centrality (EBC) and the average EBC of vertices with degree k, the validity
can be guaranteed. Despite the advantage of cascade defense, the degree based navigation strategy may
also lead to lower network efficiency. To avoid this disadvantage, we propose a new navigation strategy.
Importantly and interestingly, the new strategy can defend cascade break down effectively even without
reducing the network efficiency. Distribution of the EBC and EBC-degree correlation of the new strategy
are also investigated to explain the effectiveness in cascade defense.

PACS. 87.23.Ge Dynamics of social systems – 89.20.Hh World Wide Web, Internet – 89.40.Bb Land
transportation – 89.75.Hc Networks and genealogical trees

1 Introduction

Complex networks can describe various systems in soci-
ety, biology, transportation and communication etc. [1–4].
Since the seminal work on small world phenomena by
Watts and Strogatz [5] and scale free property with de-
gree distribution following the power law P (k) ∼ k−λ

by Barabási and Albert [6], a lot of effort has been de-
voted to understanding the structure and function of net-
works. In particular, features and dynamics of large scale
transportation networks, such as the Internet [4], Power
grids [5], World Wide Airports [7] and urban traffic sys-
tems [8,9], have recently attracted a large amount of in-
terest from the physics community due to their impor-
tance in our daily life. For a transportation network, how
to defend against intentional attacks and obtain more ro-
bustness, how to achieve higher efficiency in handling and
navigating agents, and how to control traffic congestion,
etc, are all important problems. There is a great need to
understand the traffic dynamics on complex networks.

In previous studies, various navigation strategies on
networks have been investigated. Among them, two navi-
gation strategies are particularly useful and efficient. One
is based on traditional shortest path, and the other is
based on the degree of vertices. By using the shortest path
based navigation strategy, many studies of traffic dynam-
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ics have been under taken, such as load distribution [10],
cascading failure [11–13], overload phenomenon [14,15],
microscopic time fluctuations [16,17], traffic congestions
[18,19], optimal distance [20], and optimal topology which
may avoid congestion [21]. In all of these studies, the route
for each agent to choose is according to the shortest path
it may take. Recently, progress was achieved using the de-
gree based navigation strategy [22–27]. In that strategy,
agents are navigated according to the degree of the ver-
tices they may choose in the next time step.

The degree based navigation strategy can be briefly
reviewed as follows for consistency and completeness of
this paper. The strategy is introduced because the path
with shortest length is not necessarily the quickest way in
many transportation and communication systems, espe-
cially on heterogeneous networks. In scale free networks,
vertices with large degree are more likely to suffer traffic
congestion, thus an agent may spend more waiting time
to pass through on average. By passing those hub nodes
with high degree and choosing other less congested routes,
the agents may reach their destination quicker than taking
the shortest path. Based on the phenomenon, the efficient
path is proposed by Yan et al. [23]. For any path between
vertex i and j as P (i → j) := i ≡ x0, x1, ...xn−1, xn ≡ j,
denote

L(P (i → j) : a) =
n−1∑

i=0

k(xi)a, (1)
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the efficient path between i and j is the route that
makes the sum L(P (i → j) : a) minimum. Obviously,
Lmin(a = 0) recovers the traditional shortest path length.
So the efficient betweenness centrality (EBC) can be de-
fined as

ga(υ) =
∑

s�=t,s�=v

σa
st(υ)
σa

st

(2)

where σa
st is the number of efficient paths for a given a

going from s to t and σa
st(v) is the number of efficient

paths for a given a going from s to t and passing through
v. In the following studies [22,24–26], it was shown that
on scale free networks, the degree based navigation strat-
egy performs better than the shortest path. And it is also
found that the optimal value to gain the most efficient
routing strategy is a = 1.

Because most real transportation networks, such as the
Internet and urban traffic systems, usually display scale
free degree distribution, a degree based navigation strat-
egy may perform better than a shortest path based one
on these networks. With their feature of robustness and
fragility, scale free networks can resist random attacks ef-
fectively but break down due to serious intentional at-
tacks. Even if a single node is removed, major changes
might occur due to its heterogeneous load distribution.
Specifically, if the load (or betweenness centrality) of that
removed node is relatively large, the initial change is likely
to affect the network significantly due to overload failures
of other nodes. The effect is called cascade break down and
was firstly investigated by Motter and Lai [11]. Since then,
many groups have studied the dynamics of cascade fail-
ures on networks [12,13,19,28–31]. However, their investi-
gations are based on the definition of load, or betweenness
centrality. That means the agents on the network are nav-
igated via the shortest path based strategy. As discussed
above, the degree based navigation strategy is useful and
performs well especially on heterogeneous networks. If the
agents select their routes via a degree based navigation
strategy, will the cascade break down still take place due
to deliberate attacks? And if the cascading still happens,
is there any approach to defend against it? These prob-
lems are interesting in understanding the role of naviga-
tion strategy in cascading dynamics but still unclear. In
this paper, we try to fill this gap by investigating the cas-
cade break down and defense via degree based navigation.

2 Cascade via degree based navigation
strategy

The damage caused by cascading is usually quantified by
the relative size of the largest connected component G
defined as [11],

G = N ′/N (3)

where N and N ′ are the number of nodes in the largest
component before and after the cascade failure. To mea-
sure the efficient behavior of the network, Latora et al. [32]
introduced a definition called network efficiency. The effi-
ciency eij between nodes i and j is inversely proportional

to the shortest distance dij , eij = 1/dij , ∀i, j. If there is
no path between the nodes i and j, dij = +∞ and eij = 0.
The average efficiency of the network can be defined as,

E =
1

N(N − 1)

∑

i�=j

eij (4)

where N is the size of the network.
Here we define the load Di(t) on node i at time t as

the total number of paths passing through that node via
a specified navigation strategy. Each node is assigned a
finite capacity as given in the ML model [11],

Ci = (1 + α)Di(0), i = 1, ..., N, (5)

where α ≥ 0 is the tolerance parameter. Next, we will
investigate the cascade break down triggered by the re-
moval of a single node, randomly or intentionally. The
main differences with respect to previous models are as
follows: (1) the navigation strategy we adopt here is the
degree based one. That is totally different to traditional
ones; (2) one of our main focuses is on the effectiveness
of defending against cascade break down via the degree
based navigation strategy; (3) the damage caused by the
cascade break down is also quantified in terms of the net-
work efficiency E.

The network adopted here is the classical BA model
network with mean degree 〈k〉 = 3, scaling exponent λ = 3
and network size N = 1000 [1,6]. Firstly, we investigate
cascading failure in scale free networks as triggered by
intentional removal with largest degree. As shown in Fig-
ure 1a, cascade does not take place when a > 0 while it
is aggravated as a < 0. By checking the EBC in a > 0
cases, we find the EBC at the nodes with largest degree
is N − 1. Actually, in case a = 1, about 3 per-thousand
and in case a = 2, about 2.5% nodes with largest degree
are bypassed by all agents on the network except those
agents whose destinations are the hub nodes. In fact, the
nodes with largest degree, or hub nodes, are usually im-
portant nodes and perform key functions in the system.
It is obviously unadvisable to bypass these nodes for all
agents. This phenomenon also leads low network efficiency
directly as confirmed as follows in Figure 1b. To avoid the
lack of network efficiency, in the next section, we will intro-
duce a new navigation strategy to avoid the disadvantages.
By taking the strategy with parameter a < 0, the agents
prefer hub nodes much more than a traditional shortest
path based navigation strategy, which may lead to heav-
ier congestion. So the system may be under more risk of
cascade break down. As is reported in Figure 1a, in the
a < 0 cases, even though the tolerance parameter reaches
α = 1, the system may still break down. Furthermore, the
network efficiencies after the cascading process are mea-
sured and the results are presented in Figure 1b. As is
expected, the efficiency of the network achieves its maxi-
mum at a = 0, that is the case that all agents are navi-
gated by the traditional shortest path based method. For
the degree based navigation strategy, no matter whether
a > 0 or not, network efficiency is reduced. It is also found
that in the a = 1 case, the network efficiency reaches it
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Fig. 1. Cascading failures via degree based navigation strategy
as triggered by intentional removal with the largest degree, (a)
is the relative size of the largest connected component G as a
function of tolerance parameter α; (b) is the network efficiency
E as a function of the parameter α. The networks are generated
with size N = 1000 and the average degree is 〈k〉 = 3.

maximal value without the risk of cascade break down. So
we can deduce that a = 1 is the optimal value in cascade
defense while maintaining the network efficiency at a high
level.

We next investigate cascade break down caused by re-
moval of a single node chosen among those with highest
load. The results are shown in Figure 2. In Figure 2a,
the relative size of the largest connected component G as
a function of α is presented. We can see that in a > 0
cases, the risk of cascade break down is reduced consider-
ably. As is illustrated, in the case a = 1, the critical value
of αc reaches its minimum. And in the a < 0 cases, the
cascading failure is aggravated as reported in the figure.
In the a < 0 cases, even though the tolerance parameter
reaches α = 0.8, the system may still be at risk of break
down. From Figure 2b, we can also find that the network
efficiency is reduced due to the degree based navigation
strategy and a = 1 is still the optimal value in defending
against cascade break down while maintaining the net-
work efficiency at a relatively high level. The value is the
same as in the case of removal with largest degree.

Cascade break down caused by random removal is also
considered and the results are shown in Figure 3. Unlike
the removal with largest degree or load, with the param-
eter a < 0, the cascade break down may not occur if a
node is removed randomly. By checking the EBC in a < 0
cases, we find that the EBC of a large amount of nodes
with low degree are N − 1. In fact, it is checked that 65%
(a = −1), 75% (a = −2) and 80% (a = −3) nodes of the
system are bypassed by all agents, except the instance of
being destination of an agent. What is more, as confirmed
as follows, the strategies with a < 0 strengthen the het-
erogeneousness of load. By taking such strategies, most
of agents are navigated through the hub nodes. On the
contrary, the navigation strategy with parameter a > 0
may lead to a more homogeneous load distribution. As

Fig. 2. Cascading failures via degree based navigation strategy
as triggered by intentional removal with the largest load, (a)
is the relative size of the largest connected component G as
a function of tolerance parameter α and (b) is the network
efficiency E as a function of the parameter α. The networks
are generated with size N = 1000 and the scaling exponent is
λ = 3.

Fig. 3. Cascading failures via degree based navigation strat-
egy as triggered by random removal, (a) is the relative size of
the largest connected component G as a function of tolerance
parameter α and (b) is the network efficiency E as a func-
tion of the parameter α. The networks are generated with size
N = 1000 and the scaling exponent is λ = 3.

is illustrated in Figure 3a, when a node is removed ran-
domly, major changes in the balance of loads may occur.
And from Figure 3b, we can also find that the network ef-
ficiency is reduced because of the degree based navigation
strategy.

Since it is proposed that heterogeneous load distribu-
tion is one of main reasons of cascading failure [11], we
investigated the statistical properties of EBC. The EBC
distribution are shown in Figure 4. From the figure, we
can see that the distribution of traditional betweenness
centrality follows a power law, which confirms the results
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Fig. 4. Distribution of efficient betweenness centrality with
various parameter a > 0 of scale free networks. In the inset,
the efficient betweenness centrality distribution with parameter
a < 0 are presented. Each curve corresponds to the average
over 20 realizations of network with size N = 1000 and scaling
exponent λ = 3. The data are logarithmically binned.

in Goh et al. [10,33]. When a > 0, the EBC has a nar-
rower distribution. That means the heterogeneousness of
the distribution is weakened. However, in a < 0 cases, the
EBC distribute is broader than that of the a = 0 case.
That corresponds to a strengthened heterogeneousness.
Since the heterogeneousness of load is one of the main
reasons for the cascade break down, we consider that the
different cases of EBC distribution can explain the role of
navigation strategy in cascading.

We next examine the average EBC of the vertices with
degree k to understand the effectiveness of the cascade
defense via degree based navigation strategy. The results
are shown in Figure 4. As is illustrated, in the a = 0
case, the correlation between EBC (traditional between-
ness centrality) and degree follows a power law, which con-
firms the results given in [10]. In a < 0 cases, the EBC-
degree correlations increase even faster, while in a > 0
cases, the EBC-degree correlations decay at large k. That
means those navigation strategies with parameter a > 0
may lead to low load or EBC at hub nodes. Meanwhile,
in a < 0 cases, the fast growing EBC-degree correlations
correspond to larger EBC at hub nodes. Those hub nodes
are then likely to bear more traffic congestions. That can
explain why the degree based navigation strategy may act
against cascade break down when a > 0 and aggregate
cascade failure when a < 0.

3 New navigation strategy

As mentioned above, the degree based navigation strategy
with appropriate parameter a may defend against cascade
break down effectively. On the other hand, the network
efficiency E may be reduced by such strategies. When
congestion does not occur, traffic flows on the whole net-

Fig. 5. Average efficient betweenness of vertices with degree
k for various parameter a in a log-log scale. The results are
averaged over 20 realizations of network with size N = 1000.

work are in free state. In this case, bypassing the hub
nodes may lengthen the path length between two nodes
in the network meaninglessly. What is more, in a > 0
cases, the EBC of some hub nodes are N − 1, while in
a < 0 cases, even more than 50% nodes with low de-
gree are bypassed by all agents. Since the hub nodes usu-
ally have more powerful handling abilities, bypassing these
nodes by all agents of the system is obviously inappropri-
ate. Then how to achieve higher network efficiency with
robustness against intentional attack is in need. In this
section, we propose a new navigation strategy which com-
bines the shortest path information and the degree infor-
mation together. For any path between vertex i and j as
P (i → j) := i ≡ x0, x1, ...xn−1, xn ≡ j, denoted

L(P (i → j) : q) =
n−1∑

i=0

(1 − q + qk(xi)/kmax), (6)

the efficient path between i and j here we introduced is
the route that makes the sum L(P (i → j) : a) minimum,
where 0 ≤ q ≤ 1 is a parameter and kmax is the largest
degree of the network. Obviously, when q = 0, the new
strategy is the traditional shortest path based one and
when q = 1, the strategy is just the degree based navi-
gation strategy with parameter a = 1. The corresponding
efficient betweenness centrality can be defined as follows,

gq(υ) =
∑

s�=t,s�=v

σq
st(υ)
σq

st

(7)

where σq
st is the number of efficient paths for a given q

going from s to t and σq
st(v) is the number of efficient

paths for a given q going from s to t and passing through
v. Importantly, by using this navigation strategy, it can
defend against cascade failures effectively even without
reducing network efficiency.

Cascading dynamics are simulated extensively to un-
derstand the effect of the new strategy. The networks we
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Fig. 6. Cascading failures via the new navigation strategy as
triggered by removal with the largest degree, (a) is the relative
size of the largest connected component G as a function of
tolerance parameter α and (b) is the network efficiency E as a
function of the parameter α. The networks are generated with
size N = 1000 and the scaling exponent is λ = 3.

adopt are also the BA model networks with the same
size in the previous section. Figure 6 shows the results
of cascade break down caused by intentional removal with
largest degree. As reported in Figure 6a, the new nav-
igation strategy indeed reduces the risk of cascade fail-
ure. Together with Figure 6b, we can see that the nav-
igation strategy does not reduce the network efficiency.
Figure 7 reports the cascading failure caused by removal
with largest load. As is illustrated in Figure 7a, the ro-
bustness of the network are enhanced considerably. It is
found that by using the new navigation strategy, the sys-
tem can defend against cascade break down with a much
smaller tolerance parameter α. And as shown in Figure 7b,
the network efficiency does not need to be reduced either.
Because the degree based navigation strategy with a > 0
does not perform so well in cascading caused by random
removal, does the new strategy defend against random at-
tacks effectively? In Figure 8, the results of cascade break
down caused by random removal are given. As shown in
Figure 8a, we can see that the system may resist cascad-
ing with a relatively small tolerance parameter α, say less
than 0.05, which is acceptable. In addition, the network
efficiency does not need to be reduced as illustrated in Fig-
ure 7b. Furthermore, it is checked that all the new EBC
corresponding to the new navigation strategy are larger
than N − 1, which means no nodes are bypassed by all
agents. That may be more of an advantage in navigating
agents in real transportation systems than in pure degree
based ones.

To have a deeper insight into the relationship between
shortest path based navigation strategy and the degree
based navigation strategy, we investigated the network
efficiency as a function of the parameter q. The results
are presented in Figure 9. When q is relatively small, say
q ≤ 0.5, the network efficiency does not reduce apparently.

Fig. 7. Cascading failures via the new navigation strategy as
triggered by removal with the largest load, (a) is the relative
size of the largest connected component G as a function of
tolerance parameter α and (b) is the network efficiency E as a
function of the parameter α. The networks are generated with
size N = 1000 and the scaling exponent is λ = 3.

Fig. 8. Cascading failures via the new navigation strategy
as triggered by random removal, (a) is the relative size of
the largest connected component G as a function of tolerance
parameter α and (b) is the network efficiency E as a func-
tion of the parameter α. The networks are generated with size
N = 1000 and the scaling exponent is λ = 3.

However, when q increases beyond the critical value 0.5,
the network efficiency reduces quickly. We consider that
the phase transition is because of the heterogeneous de-
gree distribution of scale free networks. In fact, from the
combination (6), the hub nodes give more impact on the
new EBC while those nodes with low degree contribute lit-
tle to the combination. Then if q is relatively small, agents
choose their route almost according to the shortest path
and only those hub nodes are likely to be bypassed. That
does not affect the network efficiency apparently. However,
with q increased large enough, the nodes with low degree
have non-negligible impact on the new navigation strat-
egy. Then the network efficiency decreases quickly as illus-
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Fig. 9. Phase transition of the network efficiency E as a func-
tion of the parameter q in the new navigation strategy. One
can easily check that the critical value is q = 0.5.

Fig. 10. Distribution of betweenness centrality when agents
are navigated via the new strategy. The results are aver-
aged over 20 realizations with networks generated with size
N = 1000 and scaling exponent λ = 3.

trated. From the features described above, we can achieve
the most effective strategy to defend against cascade break
down with holding a high network efficiency at the critical
value q = 0.5.

The new EBC distribution and new EBC-degree cor-
relation are also investigated. Figures 10 and 11 give the
results. From Figure 10, we can check that the distribution
of new EBC at q = 0.5 is narrower than the traditional be-
tweenness centrality, which expresses a less heterogeneous
load distribution. From Figure 11, one can check that at
q = 0.5, the EBC of nodes with large degree is lower than
the traditional one. The features can also explain the ef-
fectiveness of cascade defense.

Fig. 11. The BC-degree correlation of the new navigation
strategy. The results are averaged over 20 realizations with
networks generated with size N = 1000 and scaling exponent
λ = 3.

4 Conclusions

In conclusion, we investigate the cascading defense via
navigation strategy and the simulation results show that
the degree based navigation strategy with parameter a > 0
can reduce the risk of cascade break down caused by inten-
tional attacks effectively. In cascading caused by largest
degree or load, the optimal value of the parameter in
defense, while maintaining a relatively high network effi-
ciency, is a = 1. The distribution of EBC and average EBC
of vertices with degree k are investigated to explain the re-
duced risk of cascade break down via degree based naviga-
tion. However, despite the advantage in defending against
cascade break down, degree based navigation strategy may
also reduce the network efficiency. To defend against cas-
cade break down while maintaining a high network effi-
ciency, a new navigation strategy is proposed which com-
bines the traditional shortest path information and the
degree of the vertices. Simulation results show that the
new navigation strategy performs well in cascade defense
without damaging the network efficiency. Furthermore, a
critical value of the parameter in network efficiency tran-
sition is obtained. The EBC distribution and EBC-degree
correlation of the new navigation strategy can also suc-
cessfully explain this phenomenon.

This work was partly supported by National Basic Research
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China and Project of National Natural Science Foundation of
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17. B. Tadić, S. Thurner, G.J. Rodgers, Phys. Rev. E 69,

036102 (2004)
18. A. Arenas, A. Dı́az-Guilera, R. Guimerà, Phys. Rev. Lett.
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